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Abstract. A 4-dimensional variational method (4D-Var) is a popular technique for inverse modeling of atmospheric con-

stituents, but it is not without problems. Using an icosahedral grid transport model and the 4D-Var method, a new atmospheric

greenhouse gas (GHG) inversion system has been developed. The system combines off-line forward and adjoint models with

a quasi-Newton optimization scheme. The new approach is then used to conduct identical twin experiments to investigate op-

timal system settings for an atmospheric CO2 inversion problem, and to demonstrate the validity of the new inversion system.5

It is found that a system of forward and adjoint models that has less model errors but with non-linearity performs better than

another system that conserves linearity with exact adjoint relationship. Furthermore, the effectiveness of the prior error correla-

tions is confirmed; the global error is reduced by about 15 % by adding prior error correlations that are simply designed. With

the optimal setting, the new inversion system successfully reproduces the spatiotemporal variations of the surface fluxes, from

regional (such as biomass burning) to a global scale. The optimization algorithm introduced in the new system does not require10

difficult decomposition of a matrix that establishes the correlation among the prior flux errors. This enables us to design the

prior error covariance matrix more freely.

1 Introduction

Using the Bayesian algorithm, an inverse model estimates spatiotemporal variations of surface fluxes from the observations of

atmospheric concentrations with help of a priori information. A power of such technique has been demonstrated in previous15

studies, such as the synthesis inversion analysis by Peylin et al. (2013) that demonstrated significant variations in regional

carbon budgets at seasonal to interannual time scales.

In this study, we have developed a new inversion system based on the 4-dimensional variational (4D-Var) method. The 4D-

Var method is a popular inversion method and has been widely used in inversion studies for atmospheric carbon dioxide (CO2)
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(e.g. Chevallier et al., 2005; Rödenbeck, 2005; Baker et al., 2006a), methane (CH4) (e.g. Bergamaschi et al., 2013) and carbon

monoxide (CO) (e.g. Kopacz et al., 2010; Hooghiemstra et al., 2012).

Our primary interests are in long-lived greenhouse gases (GHGs) such as CO2 and CH4. Owing to strong requirement for

high-precision measurements necessary to identify changes in surface fluxes, observations of such atmospheric constituents

had been quite limited. In the beginning, flask air sampling was adopted mostly at background sites, with a typical weekly5

sampling frequency (e.g. Conway et al., 1994). These data have been used in a synthesis inversion method (Enting, 2002)

to estimate sub-continental scale CO2 fluxes (e.g. Rayner et al., 1999; Gurney et al., 2002; Baker et al., 2006b). In recent

decades, the global observation network of atmospheric GHGs has significantly expanded to include various measurement

platforms. For example, in situ continuous observation measurements are now regularly taken at background stations, as well

as at tall towers to infer regional continental fluxes (e.g. Sasakawa et al., 2010; Andrews et al., 2014). Moreover, worldwide10

aircraft observation programs are now regularly conducted (e.g. Machida et al., 2008; Sawa et al., 2015; Matsueda et al.,

2015), along with satellite observations dedicated to measurements of GHGs (Yoshida et al., 2013; Saitoh et al., 2016). These

numerous GHG observational data can be exploited to estimate surface fluxes on a much finer scale than a sub-continental

scale. While the synthesis inversion method has limitations in resolution, both in fluxes and observations owing to its direct

matrix calculation approach, the 4D-Var method has nearly no limitation in the number of observations it can accommodate.15

The method also has the ability to estimate model grid resolution fluxes, so that regionally limited CO2 flux anomalies such

as biomass burnings are detectable. The 4D-Var method was developed originally for numerical weather prediction (NWP), in

which a weather model’s initial state of the atmosphere is optimized, with respect to a set of observations, to improve weather

prediction. This is done over successive time windows. At present, the 4D-Var method is employed in many leading operational

NWP centers. However, because of a much longer assimilation window and the requirement of optimizing boundary conditions20

(surface fluxes), but not the model’s initial conditions, application of the 4D-Var method to GHGs inversion raises different

issues from those associated with NWP and need to be resolved.

In developing our 4D-Var inversion system, we have introduced unique numerical techniques that have not been used in

previous 4D-Var inversions of GHGs; these techniques use an icosahedral grid transport model based on Non-hydrostatic

Icosahedral Atmospheric Model (NICAM: Tomita and Satoh, 2004; Satoh et al., 2008, 2014), along with an efficient opti-25

mization scheme of Preconditioned Optimizing Utility for Large-dimensional analyses (POpULar: Fujii and Kamachi, 2003;

Fujii, 2005). NICAM is one of the most advanced general circulation models (GCMs), with its dynamical frame structured

with quasi-homogenous grids that are made by recursively dividing an icosahedron, which is completely different from the

regular latitude-longitude grid models used so far. For the new inversion system, we have employed the NICAM-based Trans-

port Model (NICAM-TM), naming our inversion system as NICAM-TM 4D-Var. The previous accompanying paper of Niwa30

et al. (2016) derived and evaluated the off-line forward and adjoint models of NICAM-TM. This paper describes the entire

NICAM-TM 4D-Var system, including the optimization scheme POpULar.

One prominent feature of POpULar is that it does not require inverse calculation of the prior error covariance. Generally,

an inverse matrix of a prior error covariance is included in the Bayesian inversion algorithm. However, its direct calculation

is infeasible due to its large matrix size. Therefore, previous studies have avoided the inverse matrix calculation by simply35
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neglecting the off-diagonal elements of the prior error covariance or employing eigenvalue decomposition (Chevallier et al.,

2007; Meirink et al., 2008). Actually, the off-diagonal elements represent the error correlation among prior fluxes. In NWP, the

spectral method is often used and the prior error covariance is defined in the spectral field, thus able to regard the prior error

covariance as diagonal. However, it cannot be applied to the flux inversion problem. Although designing flux error correlations

is not a trivial task, it needs to be addressed because surface fluxes must be mutually correlated when they are located in a close5

proximity to each other (Chevallier et al., 2012). Additionally, it is possible that the error correlations could more effectively

propagate observational information to estimated flux values. However, eigenvalue decomposition would become difficult

when the specified prior error covariance is complicated or when the spatiotemporal resolution of fluxes is increased. Since the

POpULar optimization scheme does not require eigenvalue decomposition, we can easily introduce flux error correlations into

the inverse calculation. POpULar was developed originally for oceanography assimilation (Usui et al., 2006, 2015); our study10

is its first application to an inverse problem of atmospheric trace constituent.

In order to validate and verify the new inversion system, we have conducted identical twin experiments of atmospheric

CO2 inversion, in which pseudo observations produced by “true fluxes” are assimilated, instead of real observations. It has

been demonstrated that such an identical twin experiment is an effective way to test the ability of an optimization scheme in

an inversion calculation (e.g. Baker et al., 2006a; Chevallier et al., 2007; Yumimoto and Takemura, 2013; Liu et al., 2014).15

Conducting sensitivity tests based on the identical experiment, we investigate the optimal system settings in the context of

adjoint models and optimization schemes. In addition, we demonstrate the utility of introducing error correlations in the prior

fluxes.

As described in Niwa et al. (2016), NICAM-TM has two types of adjoint models: one is a discrete adjoint model and the

other is a continuous one. The discrete adjoint model ensures model linearity and maintains an exact adjoint relationship with20

its corresponding forward model, while the continuous adjoint model is non-linear and consequently loses the exact adjoint

relationship but has less model errors. Gou and Sandu (2011) compared a continuous adjoint model with a corresponding

discrete adjoint model using a regional chemical transport model and evaluated the effect of using these two models in the

optimization of initial states of tropospheric ozone. In that study, they found continuous adjoint to be superior in ideal assimi-

lation cases, especially when observations are sparse. However, when real observations were used in assimilation, they found25

that the discrete adjoint performed better than the continuous adjoint. Therefore, which adjoint is better depends strongly on

models used. Furthermore, it may also depend on the assimilation settings. Approaching the problem differently from Gou

and Sandu (2011) when applied to CO2, we try to optimize surface fluxes of CO2, which has a much longer lifetime in the

atmosphere and hence requires a longer assimilation window than ozone. In this study, we evaluate the effect of using discrete

and continuous adjoint models as applied to CO2 inversion problems. Using the optimal inversion settings determined from30

the sensitivity tests, we also investigate how the current observation network could be exploited better to constrain surface flux

estimates.
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2 Methods

2.1 NICAM-TM 4D-Var

2.1.1 System overview

An inversion problem employs Bayes’ theorem, and an optimal solution of control variable x is obtained where the cost function

defined below is minimized.5

J(x) =
1
2

xTB−1x +
1
2
(
Mx− ydobs)T R−1

(
Mx− ydobs) , (1)

where B is the prior error covariance matrix of x, M is the forward transport model operator matrix which links surface fluxes

to atmospheric concentration measurements taken at specified locations and time, and R is the error covariance matrix of the

misfit between observations and modeled concentrations. It should be noted here that M is assumed linear according to the

linear property of atmospheric transport, though we use both linear and non-linear models as described in Section 2.3 below.10

The control variable vector x represents increment from the prior flux xpri and the observation vector ydobs represents differences

between the modeled concentrations from xpri and observed concentrations yobs, i.e., ydobs = yobs−Mxpri. In fact, the control

variable vector x consists of initial concentrations as well as surface fluxes, thus atmospheric concentration fields are uniquely

determined in the model. However, for simplicity, we only optimize surface fluxes in this study. In the 4D-Var method, the

optimal x is determined after iterative calculations that uses the gradient of the cost function with respect to x15

g = B−1x + MTR−1
(
Mx− ydobs) . (2)

The last term on the right-hand side is derived by a forward simulation Mx followed by an adjoint simulation

MTR−1
(
Mx− ydobs

)
, which are performed by the forward and adjoint models of NICAM-TM, respectively. Both the forward

and adjoint models are driven by archived meteorological data (e.g. mass fluxes, temperatures, turbulent coefficients, cumulus

base mass fluxes; details are found in Niwa et al. (2016)). The meteorological data are prepared by a GCM run of NICAM, in20

which horizontal winds are nudged towards reanalysis data to simulate real atmospheric flow fields.

In summary, Fig. 1 shows a schematic figure of the NICAM-TM 4D-Var system. In practice, the 4D-Var calculations are

conducted as follows:

(i) Run the on-line NICAM with nudging to make meteorological data that are used in the following simulations of the

forward and adjoint NICAM-TM,25

(ii) Run the forward NICAM-TM to calculate atmospheric concentration fields of a target atmospheric constituent forced by

prior flux data,

(iii) Calculate the differences between the modeled and observed concentrations,

(iv) Run the adjoint NICAM-TM to calculate the gradient of the cost function from the model-observation differences that

are weighted by the error covariance of observation-model misfit, and30
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(v) Modify the prior flux data according to the cost function and its gradient using the POpULar optimization scheme.

The prior flux data are replaced with those given by (v), and then the (ii)-(v) calculation steps are repeated until the flux data

are sufficiently optimized. Finally, the optimized flux is treated as the posterior flux.

2.1.2 NICAM-TM

NICAM achieves consistency between tracer transport and air density change, which assures Lagrangian conservation and5

mass conservation simultaneously, owing to its finite volume method-based dynamical frame (Satoh et al., 2008; Niwa et al.,

2011a). This property is absolutely necessary for transport simulations of long-lived tracers such as GHGs. Because of this,

NICAM-TM has been developed and used for transport and inversion studies of CO2 (Law et al., 2008; Patra et al., 2008;

Niwa et al., 2011b, 2012; Peylin et al., 2013). Its fundamental transport performances have been evaluated satisfactorily using

observations of radon (222Rn) and sulfur hexafluoride (SF6) (Niwa et al., 2011a, 2012).10

Detail descriptions of the off-line forward and adjoint models of NICAM-TM are found in the accompanying paper of

Niwa et al. (2016). Reanalysis data used with nudging in the on-line calculation are from the 6-hourly Japan Meteorological

Agency Climate Data Assimilation System (JCDAS) reanalysis (Onogi et al., 2007). The archived meteorological data consist

of air mass densities, three-dimensional air mass fluxes, vertical diffusion coefficients, mixing ratios of water substances,

temperatures, and cumulus base mass fluxes. These data are consistent with the dynamical calculation of NICAM, though their15

temporal resolutions are decreased from the original model time step (20 min.) to 1- to 3-hourly steps in the off-line model

calculations (Niwa et al., 2016). The horizontal resolution is set as “glevel-5” (5 denotes the number of division from the

original icosahedron; see Fig. 1 of Niwa et al. (2016)), whose grid interval is about 240 km, and the number of vertical model

layers is 40.

2.1.3 POpULar20

For optimization, we use the scheme of POpULar (Fujii and Kamachi, 2003; Fujii, 2005). The POpULar scheme is based on

the optimizing scheme developed by Derber and Rosati (1989) (hereafter DR89). Fujii and Kamachi (2003) extended the linear

conjugate gradient method of DR89 to non-linear cases using a quasi-Newton method.

In Eqs. (1) and (2), the matrix size of B is too large to be inverted if B is an off-diagonal matrix, i.e., when prior error corre-

lations are considered. Therefore, a transformation of the control variables is often applied, with one prominent transformation25

being x̃ = B−1/2x. This transformation provides efficient preconditioning to accelerate the convergence of iterative calculations

(Lorenc, 1988). In fact, several 4D-Var inversion systems for atmospheric trace gas constituents employ this transformation

with eigenvalue decomposition (Chevallier et al., 2007; Meirink et al., 2008), though feasibility of eigenvalue decomposition

still depends on the matrix size and the designing of the error correlations. In contrast, DR89 and POpULar also use the pre-

conditioning of Lorenc (1988) but they do not require eigenvalue decomposition. Detailed algorithm of DR89 is described in30

Appendix A. Below we describe the POpULar scheme but readers are encouraged to see Fujii (2005) for further explanation.
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The quasi-Newton scheme of POpULar employs the limited-memory version (Nocedal, 1980; Liu and Nocedal, 1989) of the

Broyden-Fletcher-Goldfarb-Shanno formula (L-BFGS) that updates the search direction d of the control variable x using an

approximated inverse Hessian of J(≡H). Using the transformation of Lorenc (1988) (x̃ = B−1/2x), the transformed control

variable is updated in iterative calculations as

x̃k = x̃k−1 +αkd̃k−1, (3)5

d̃k =−H̃k,0g̃k, (4)

where k is the iteration counter, d̃ = B−1/2d, g̃ = B1/2g, and H̃k,0 = B−1/2Hk,0B−1/2. The coefficient αk is the step length

of the line search that minimizes J(xk−1 +αkdk−1). If an optimization problem is highly non-linear, αk is iteratively sought

with quadratic interpolation (Fujii, 2005). However, in a linear or weakly non-linear problem, such as the one considered here

in this study, the initial guess of αk = 1 is valid at most iterations. By the L-BFGS formula, H̃k,0 is calculated with m pairs of10

ỹk(= g̃k − g̃k−1) and p̃k(= x̃k − x̃k−1) that are derived from the previous iterations as

H̃k,−m = γkI, (5)

H̃k,l = ṼT
k+lH̃k,l−1Ṽk+l + ρ̃k+lp̃k+lp̃

T
k+l, (l =−m+ 1, · · · ,−1,0), (6)

where I is the identity matrix, ρ̃k = 1/ỹT
kp̃k and Ṽk = I− ρ̃kp̃kỹT

k. γk represents the scaling coefficient (Shanno and Phua,

1978) calculated as15

γk = ỹT
kp̃k/ỹT

kỹk. (7)

Using non-transformed variables, the above Eqs. (5)-(7) are simply rewritten by replacing I with B as

Hk,−m = γkB, (8)

Hk,l = VT
k+lHk,l−1Vk+l + ρk+lpk+lp

T
k+l, (l =−m+ 1, · · · ,−1,0), (9)

where ρk = 1/yT
kpk and Vk = I− ρkpkyT

k, and20

γk = yT
kpk/yT

kzk, (10)

where zk = Byk = hk −hk−1 and hk = Bgk. Then, the search direction can be expressed as a linear combination of h, z, and

p as

dk =−γkhk +
0∑

l=−m+1

(
ak,lzk+l + bk,lpk+l

)
, (11)

where ak,l and bk,l are the scalar coefficients that are determined by hk and m pairs of p and z (details are described in25

Appendix B). It should be noted here that Eq. (11) does not require B−1 calculation. In order to avoid the calculation of B−1,

we introduce ck = B−1xk, qk = B−1pk, and Kk = 1
2xkB−1xk. The cost function and its gradient at iteration k are written as

J(xk) =Kk +
1
2
(
Mxk − ydobs)T R−1

(
Mxk − ydobs) , (12)

gk = ck + MTR−1
(
Mxk − ydobs) . (13)
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Along with the updating of x by

xk = xk−1 +αkdk = xk−1 + pk, (14)

Kk can be also recursively updated as

Kk =Kk−1 + pT
k−1

(
ck−1 +

1
2

qk−1

)
. (15)

Furthermore, ck and qk can be updated using Eqs. (14) and (11) respectively as5

ck = ck−1 + qk−1, (16)

qk = αkB−1dk = αk

(
−γkgk +

0∑

l=−m+1

(
ak,lyk+l + bk,lqk+l

)
)
. (17)

In practice, POpULar uses the above equations of (10)–(17) with the initial condition of

x0 = 0, (18)

K0 = 0, (19)10

c0 = 0, (20)

g0 = MTR−1
(
Mx0− ydobs) , (21)

h0 = Bg0, (22)

d0 =−h0. (23)

Thus, we can see that the sequence of these equations do not require B−1. Practical calculations of Eqs. (11) and (17) are15

described in Appendix B.

2.2 Identical twin experiment design

The identical twin experiment is designed for atmospheric CO2 inversion. We first run a forward simulation to construct a set

of pseudo atmospheric observations using a prescribed flux dataset considered as “true fluxes”. In the experiment, a different

flux dataset is used as the prior fluxes and the pseudo observations are assimilated into the system to modify the prior fluxes,20

which is expected to converge to the true fluxes. The validity of the inversion system can be elucidated by evaluating how close

the posterior fluxes have approached the true fluxes after the assimilation.

The analysis period, i.e., assimilation window, is chosen as the year of 2010 and monthly mean CO2 fluxes are optimized in

the inversion. Therefore, the number of control variables to be optimized is 12 (months) × 10,242 (the number of horizontal

grid points) = 122,904. Since we do not optimize the initial concentrations, we use the same initial concentrations for the true25

and assimilation runs.

2.2.1 True and prior flux datasets

We have prepared a prior flux dataset that will be used in future inversions with real atmospheric observations. But for this

study, we have prepared the “true flux” dataset mentioned above, terrestrial fluxes of which are already optimized to some

7
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extent by another inversion and explicitly includes biomass burning data. Table 1 summarizes the prior and true flux datasets.

All of the prior and true flux data are provided as monthly mean. As commonly done for prior and true fluxes, we use the fossil

fuel emissions of Carbon Dioxide Information Analysis Center (CDIAC) (Andres et al., 2013). Thus, we assume that the fossil

fuel emissions in the prior flux dataset is perfectly known and fluxes other than the fossil-fuel emissions are optimized in the

inversion.5

For terrestrial biosphere and ocean fluxes, the prior flux dataset uses net biome production (NBP) data from a process-based

ecosystem model called Vegetation Integrative SImulator for Trace Gases (VISIT: Ito and Inatomi, 2012), and sea-air exchange

data based on shipboard ∆pCO2 measurements calculated by Japan Meteorological Agency (Iida et al., 2015), respectively.

For the true flux dataset, we use net ecosystem production (NEP) data of Carnegie-Ames-Stanford-Approach (CASA) model

(Randerson et al., 1997) modified by the inversion of Niwa et al. (2012) and climatological ∆pCO2-based sea-air exchange10

data of Takahashi et al. (2009). The true flux dataset also contains biomass burning emissions from the Global Fire Emissions

Database (GFED) version 3.1 (van der Werf et al., 2010). The reason of the inversion modification of the CASA flux field is that

the original CASA NEP is annually balanced (annually integrated flux is zero everywhere). Therefore, we scaled the terrestrial

flux values at each latitude band and month so that the zonal average value coincides with a more realistic value of the inversion

flux calculated by Niwa et al. (2012). The inversion flux is the average for 2006–2008, in which the global terrestrial biosphere15

uptake is 4.4 Pg C yr−1. Readers should note that NEP of CASA and NBP of VISIT represent different fluxes; in addition

to NEP, NBP has additional sources of biospheric respiration and combustion emissions caused by natural and anthropogenic

disturbances. By replacing the original CASA fluxes with the inversion fluxes and adding the biomass burning emissions, both

the true and prior land fluxes represent emissions with same sources.

2.2.2 Pseudo observations20

Pseudo observations are constructed from the on-line calculation using NICAM-TM driven by the true flux dataset. After a

three-year spin-up, concentration values are extracted at 65 locations that emulate well-known CO2 ground-based observation

sites (locations are shown in Fig. 2 and detail information is listed in Appendix C). Although some sites actually operate in situ

continuous observations, we assume, for simplicity, that flask air sampling observations are made at all the sites with one-week

sampling frequency. Therefore, the total number of observation data is 65 (sites) × 52 (weeks) = 3,380. The timing of flask25

sampling is set at 13:00 LST at each site for sampling in well-mixed air masses. Random values with a standard deviation of

0.2 ppm are added to the extracted model values to mimic actual measurement uncertainties.

2.2.3 Prior error covariance

Diagonal elements of B (variance) are derived from absolute differences between the prior and true fluxes that are scaled for

specified global and ocean total values as30

Bi,i =
(
r|xpri

i −xtrue
i |
)2

, (24)
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where i denote the element index, and r is the scaling factor. xpri and xtrue represent the prior and true flux values, respectively,

but at this stage we exclude the biomass burnings of GFED from the true fluxes. The scaling factor r is determined so that the

annual global uncertainty

σ =
√

aBaT (25)

corresponds to 3.0 Pg C yr−1 and 0.5 Pg C yr−1 for land and ocean fluxes, respectively. The vector a acts as the spatiotemporal5

averaging operator and ax produces the annual global average of x. In fact, using the difference between xpri and xtrue provides

some ideal error variance distributions, although xtrue does not include the biomass burnings of GFED. When using real obser-

vations, xtrue is of course unknown. Therefore, this ideal error covariance would overestimate the performance of the inversion

system. We recognize that the prior variance setting critically influences the optimization quality; however, the task of seeking

appropriate variances is out of the scope of this study. Nevertheless, not including the biomass burnings in xtrue would help us10

to elucidate the ability of the inversion system to find large CO2 flux anomalies.

For the off-diagonal elements in matrix B, we introduce a simple spatial correlation with the Gaussian function in the off-

diagonal elements (covariance) as

Bi,j =Bi,iBj,jexp

(
−
l2i,j
2L2

)
, i 6= j, (26)

where li,j is the horizontal length between i and j andL is the correlation scale length. Here, we assume no temporal correlation15

since we are optimizing relatively low temporal resolution fluxes (monthly means). In Eq. (26), we use the globally unique

scale lengths for land and ocean, Llnd and Locn, set at 500 km and 1000 km, respectively. There is no cross correlation between

land and ocean fluxes. These correlation scale lengths are determined from the results of previous studies (such as Rödenbeck,

2005; Chevallier et al., 2007; Basu et al., 2013), although they did not use the Gaussian function as in Eq. (26) but used instead

an exponential decay function. As is the case with the variance, we leave the determination of optimal values for L for a future20

study. Figure 2 shows four examples of the error correlation distributions determined by exp(−l2/2L2) with Llnd = 500 km

and Locn = 1000 km.

2.2.4 Observation-model misfit error covariance

We set the error covariance for model-observation misfit R at 1 ppm2 (ppm is used here as equivalent to the dry air mole fraction

unit of µ mol mol−1) for all the variances and 0 ppm2 for all the covariances; therefore, R is a unit diagonal matrix. Actually,25

introducing off-diagonal elements in R is difficult compared to B because the inverse calculation of R is necessary at some stage

in the calculation. Nevertheless, the “no covariance” assumption is relatively reasonable considering the sparse spatiotemporal

distribution of the observations used here. The misfit uncertainty of 1 ppm is arbitrary but reasonable in representing model-

observation misfits, based on the reported numbers published in previous studies (e.g. Patra et al., 2008).
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2.2.5 Diagnostic measures

After the assimilation, we evaluate how close the posterior fluxes approach the true fluxes, by using root-mean-square error

(RMSE) measures described below. On the global scale, we use

GRMSE =

√√√√ 1
N

1
12

N∑

i=1

12∑

m=1

(
xpost

i,m−xtrue
i,m

)2
, (27)

where i and m denote the ith model grid and the mth month, respectively, and N denotes the number of model grids. xpost5

represents the posterior flux value and xtrue denotes the true flux value including the biomass burnings. We also investigate

error distributions by

RMSE =

√√√√ 1
12

12∑

m=1

(
xpost

i,m−xtrue
i,m

)2
, (28)

calculated for each model grid i.

2.3 Sensitivity tests10

Using the above twin experiment, we conducted sensitivity tests to elucidate impacts on the inversion results due to the differ-

ences in the adjoint models (discrete or continuous) and optimization schemes.

As described in Niwa et al. (2016), the linearity of the discrete adjoint is ensured and the perfect adjoint relationship is

achieved with the forward model in which the non-linear flux limiter (Thuburn, 1996) in the advection calculation is turned

off. On the other hand, the continuous adjoint has the same non-linear flux limiter as that of the forward model calculation to15

maintain the monotonicity of the advection adjoint. Although this fails to achieve perfect adjoint relationship with the forward

model, smaller model transport errors are obtained. Therefore, we have tested two forward and adjoint model sets: one set

preserves linearity and complete adjoint relations using the forward model without the flux limiter and the discrete adjoint

model (LINEAR), while the other one is a non-linear and non-exact adjoint set using the forward model with the flux limiter

and the continuous adjoint model (NON-LINEAR).20

Originally, the POpULar optimization scheme was designed for non-linear problems of ocean dynamics by modifying the

linear optimization scheme of DR89, as described above. In atmospheric CO2 inversion, atmospheric transport process is

treated as linear, i.e., tracer is passive, and non-linear chemical process is not involved. Meanwhile, if we use the NON-

LINEAR model set, the problem becomes slightly non-linear due to the use of the flux limiter. Therefore, we also examine

the behaviors of the linear (DR89) and non-linear (POpULar) optimization schemes with the two model sets (LINEAR and25

NON-LINEAR).

Furthermore, we also compare results between the two case, with diagonal B and with off-diagonal B, to confirm the ef-

fectivity of prior error correlations. In the diagonal B case, we set the off-diagonal elements to zero and rescale the diagonal

elements by r (Eq. 24) so that the global uncertainty σ (Eq. 25) coincides with that of the off-diagonal B. In summary, we
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conduct eight sensitivity tests using the LINEAR/NON-LINEAR model sets, the DR89 and POpULar optimization schemes

and diagonal and off-diagonal B (Table 2).

3 Results

3.1 Sensitivities to adjoint models, optimization schemes, and error correlations

In each of the sensitivity tests, we perform a total of 60 iterations to optimize the surface fluxes. Figure 3 shows GMRSE5

variations against the number of iterations and Table 2 lists GRMSE values after 60 iterations. As the iterative calculation

proceeds, GRMSE shows smooth reduction in all the cases except for the case of NON-LINEAR+DR89 with the diagonal B

(Fig. 3a), where GRMSE reduction in value matches that of its corresponding LINEAR case. But after about 30 iterations, the

two curves diverge rapidly as the NON-LINEAR case increases in GRMSE to a value at the 60th iteration greater than the value

at the beginning of the iteration. This is due to the fact that DR89 is strictly designed for a linear problem (Appendix A) and10

hence is incompatible with NON-LINEAR. However, if off-diagonal B is used, NON-LINEAR+DR89 produces a GRMSE

reduction curve similar to that of the LINEAR case (Fig. 3c). This may be due to the fact that the smoothing effect of the error

correlation in B suppresses the incompatibility of DR89 with NON-LINEAR.

On the other hand, POpULar does not show such incompatibility with NON-LINEAR (Figs. 3b and d). This is because

the POpULar optimization algorithm allows model non-linearity. For the LINEAR cases, the GRMSE values from the use of15

POpULar are the same as those in the DR89 cases, irrespective of the prior error covariance setting (Table 2).

Although the differences are modest, NON-LINEAR generates smaller GRMSE values than those from LINEAR while

using POpULar, which is apparent especially with the off-diagonal B (Fig. 3d). This is because of the smaller model error

property of the NON-LINEAR model set. In the non-linear case, the cost function defined by Eq. (1) is no longer quadractic

and the minimum point is not uniquely determined. Therefore, use of the NON-LINEAR model set has a risk of falling into a20

local minimum, causing deterioration of the optimization. The result indicates that, for the CO2 inversion problem considered

here, the smaller model error of NON-LINEAR surpasses the negative effect of its non-linearity.

Comparing Figs. 3c and d with Figs. 3a and b, we see that the off-diagonal B produces significantly smaller GRMSE than

the diagonal B. The reduction ratio in GRMSE from the prior value (5.59×10−7mol m−2 s−1) increases by about 15 %; the

GRMSE value reduces from 4.07–4.10×10−7 mol m−2 s−1 (excluding the case of NON-LINEAR+DR89) to 3.21–3.37×10−725

mol m−2 s−1 by introducing the error correlation in B. An implication of this result, especially for the global ocean, is that

the diagonal B fails to reduce GRMSE from the prior condition (Table 2). Intrinsically, the optimization of the ocean fluxes

is difficult compared to that of the land fluxes, because ocean flux variations are much smaller than those associated with the

land, but also in our case we use true ocean flux that is similar to the prior flux. The result indicates that introducing spatial

error correlations in B is necessary in order to modify such small ocean fluxes.30

Figure 4 shows RMSE distributions of the posterior fluxes calculated with the diagonal and off-diagonal B; the RMSE dis-

tribution of the prior flux is also shown as a reference. Posterior fluxes are produced after 60 iterations using POpULar+NON-

LINEAR. As already indicated in Figs. 3c and d, RMSEs of the two posterior fluxes are much less than that of the prior,
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demonstrating the optimization skill of our new system. The prior flux has RMSE much more than 15×10−7 mol m−2 s−1 in

the terrestrial areas, where biosphere activity is large (e.g., eastern North America, South America, East and Southeast Asia,

and Africa) (Fig. 4d). Those errors are effectively reduced by the assimilation to values mostly less than 10×10−7 mol m−2

s−1. Moreover, in the off-diagonal B case, the errors are further reduced, especially in the areas where observations are sparse,

e.g., Africa, South Asia, South America, and Australia (Fig. 4c). This indicates that introducing error correlations allows an5

effective propagation of atmospheric CO2 information to surface fluxes located beyond the observation footprints that are

determined by atmospheric flow fields.

3.2 Posterior flux features

In this section, we present general features of the posterior fluxes and compare them with the true fluxes. We assess when,

where and how much the posterior fluxes are reliable when real observations are used. The posterior fluxes analyzed here are10

derived after 60 iterations by NON-LINEAR+POpULar with the off-diagonal B, which has been shown to display the smallest

error among the above eight sensitivity tests.

First, we compare atmospheric CO2 concentration fields that are generated by the forward NICAM-TM from the true, prior

and posterior fluxes. Figure 5a shows the time series of simulated atmospheric concentrations at the Minamitorishima (MNM)

observation site, located on western North Pacific. In fact, the pseudo observation network (Appendix C) includes MNM and15

its location is shown in Fig. 2. In Fig. 5a, we see a good agreement between the posterior and the observational concentration

values. The root mean square difference between them is 0.19 ppm, which is much less than the prescribed model-observation

misfit error of 1 ppm (Section 2.2.4). This follows from the fact that we have perfect transport simulation. That is, the same

transport model is used for preparing the observations and the assimilation. The prescribed value of 1 ppm is rather inflated

(but reasonable for a practical inversion with real observations), but it is expected that the difference between the posterior and20

observed concentration is close to the random error of 0.2 ppm that we add to the observations (Section 2.2.2).

Figures 5b-d show latitude-time cross sections of zonally averaged surface concentration simulated from the true, prior

and posterior fluxes. Compared to the concentration field generated from the true fluxes, a period of low concentration at the

northern latitudes starts one month earlier in the field forced by the prior fluxes. Furthermore, latitudinal gradients between

30°S and 30°N are weaker during January–May. These features are modified by the assimilation so that the spatiotemporal25

variation of the posterior CO2 concentration is nearly identical to the one obtained from the true flux (Fig. 5d).

To see the degree of similarity in the flux distribution between the posterior and true fluxes, we show monthly mean flux

distribution for March, July and September of 2010 in Fig. 6, along with the corresponding prior fluxes. As shown in Fig. 6,

the general pattern of the true flux for each month is retrieved relatively well, as indicated in the posterior flux distribution,

from the prior flux.30

For March, the true flux has larger sources in the northern mid- to high-latitudes than those of the prior flux and this feature

is retrieved well by the inversion (Figs. 6a-c). Furthermore, it is noteworthy that the inversion successfully retrieves the distinct

source/sink contrast patterns around the equator in Africa and South America. For July, the true flux shows a larger biosphere

sink in the northern latitudes than the one captured by the prior flux; the posterior flux calculated by our inversion method shows
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a sink of similar magnitude as detected in the true flux (Figs. 6d-f). However, there is a mismatch in the spatial distribution of

the sink. Upon closer look, one can see that the posterior flux has large sinks in West Siberia and eastern North America (Fig.

6e), while the true flux has a comparably large sink in western Canada (Fig. 6f). During the summer season, vertical transport

over a continental region is quite active, and the emission from the surface becomes well mixed in the vertical. Therefore,

ground-based stations observe only diluted flux signals, resulting in weak constraint on the flux estimation. For September, the5

prior flux is still characterized by sinks over most of the continental regions. However, the true flux has already changed to

a source in northern high-latitudes, and the posterior flux is able to reproduce that feature (Figs. 6g-i). Moreover, the distinct

source/sink contrasts in Africa and South America, signs of which are opposite to those in March, are again well retrieved

by the inversion. The ideal prior error variance (Section 2.2.3) might have helped this achievement to some extent. Using

differences between the true and prior fluxes to determine the prior error variance allows the system to know where and by how10

much observational signals should propagate to surface fluxes. But it is not able to assign the sign of the flux (source or sink),

only the magnitude. Therefore, these results suggest that our new inversion system is capable of reproducing continental flux

patterns from surface observations only.

Furthermore, the inversion is able to detect successfully “hot spot”-like CO2 sources from biomass burnings. In Fig. 7, we

focus on the fluxes in Indochina for March, and in South America and Africa for September of 2010. In those regions, the true15

fluxes derived from GFED show regional anomalies. In 2010, large biomass burnings occurred under a severe dry condition

in Amazon (Lewis et al., 2011). Compared to the prior fluxes that have moderate spatial variations, the posterior fluxes show

large sources in those areas that are comparable to the true flux patterns, though the posterior source peaks are underestimated

in Thailand and Amazon, and are shifted from the coast to the inland area in southern Africa. It should be noted that in this

exercise, we do not use biomass burning information to assign the prior error variance (Section 2.2.3). Therefore, these results20

suggest that our new inversion system is capable of detecting even regionally limited flux anomalies. Such capability will be

enhanced if more observations are available.

Figure 8 compares zonally-integrated seasonal cycles of the posterior fluxes over terrestrial and ocean areas in three lati-

tudinal bands with those of the prior and true fluxes. As expected from Fig. 6, the seasonal cycle of the posterior flux agrees

generally well with that of the true flux, compared to that of the prior flux. However, the degree of agreement is latitudinally25

dependent. The region where the amplitude and the phase of the seasonal cycle of the posterior flux agree the most with those of

the true flux is in the northern mid- to high-latitude band (30–90°N) (Figs. 8a and b), for both the land and the ocean. The result

reflects the existence of relatively dense surface observation network in this latitude zone. The seasonal cycles of the posterior

fluxes in the other latitudinal bands (30°S–30°N and 30–90°S) show moderate similarities to the true flux seasonal cycles. The

largest difference can be seen for the ocean flux in the 30–90°S latitude band, particularly during the southern hemisphere fall30

season. Improvements could be made, but the seasonal amplitudes are very small and are difficult to be retrieved.

Latitudinal profiles of annual zonal mean fluxes can also be retrieved well (Fig. 9). For example, compared to the prior flux,

the posterior flux matches the true flux and shifts the sink towards lower latitudes (Fig. 9a). Moreover, the true and posterior

fluxes consistently show two distinct source peaks across the equator. Figure 9b shows that this flux pattern is due mostly to the

terrestrial flux (Fig. 9b). In the southern extra tropics, on the other hand, the posterior flux is not modified significantly from the35
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prior flux, suggesting weak constraints due to a sparse number of observational stations in that area. Compared to the terrestrial

flux, the ocean flux has much smaller latitudinal variations (Fig. 9c). In spite of such small variations, we see improvements in

the prior flux by the inversion in the northern latitudinal band of 30–60°N and in the Southern Ocean in the latitudinal band of

50–70°S. At other latitudes, the posterior flux has similar profiles to those of the prior flux.

4 Conclusions5

In this paper, we have introduced, described and tested our new 4D-Var inversion system based on the icosahedral grid model,

NICAM. Adding to the off-line forward and adjoint models of NICAM-TM, this study has introduced the optimization method

of POpULar, which constitutes an essential part of the 4D-Var system. Moreover, we have conducted identical twin experiments

to confirm the capability and utility of the new system for atmospheric CO2 inversion.

Based on the results of the sensitivity tests using various combinations of the optimization method (DR89 and POpULar)10

and the discrete and continuous adjoint models (LINEAR and NON-LINEAR), we have found that a combination of POpULar

and the continuous adjoint (NON-LINEAR+POpULar) has produced the least error. This is due to the less transport error of

the continuous adjoint and the flexibility of the POpULar optimization method against the model non-linearity. Even with

the discrete adjoint, POpULar shows high optimization capability, but its error is slightly larger than when used with the

continuous adjoint. Therefore, if model linearity and perfect adjoint relationship are strongly required, the combination of15

LINEAR+POpULar could be another choice.

We have introduced spatial error correlations in the off-diagonal elements of the prior error covariance and have shown

that it significantly improves the posterior fluxes, reducing the global flux error by about 15 %. This result is consistent

with other 4D-Var inversions, but we have achieved it an easier way that does not require matrix inverse calculation nor any

matrix decomposition; the optimization algorithm of POpULar has an advantage in its simple treatment of the off-diagonal20

matrix. This would prove to be a more powerful tool when more complicated flux error structures are considered. For instance,

Meirink et al. (2008) assumed that the spatial and temporal correlations are mutually independent, but POpULar would enable

us to consider cross correlations in space and time. In this study, arbitrary numbers and an ideal prior errors have been used

respectively for the error correlation scales and the diagonal elements (variance) of the prior error covariance matrix. Therefore,

our next stage of research will involve an investigation of optimal prior error design, taking the advantage of POpULar.25

By using our new 4D-Var inverse system, we have successfully retrieved general features of the true flux variations from

weekly flask observations obtained from 65 ground-based stations. Moreover, a remarkable performance of the new system is

demonstrated by the result that the inversion is able to detect regionally limited flux anomalies caused by biomass burnings.

However, even with the perfect (non-biased) transport model and the ideal prior error variances, improvements in the prior flux

estimate in some regions have been found to be limited due to the sparseness of the observations. Further improvements are30

expected by adding data from in situ continuous measurements and worldwide observations by aircraft (e.g. Machida et al.,

2008) and satellites (e.g. Yoshida et al., 2013; Saitoh et al., 2016) in a future study.
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Code availability

Development of NICAM-TM 4D-Var and experimental studies of its application are being continued by the authors. The

source codes of NICAM-TM 4D-Var are available for those who are interested. The source codes of NICAM-TM are included

in the package of the parent model NICAM, which can be obtained upon request under the general terms and conditions

(http://nicam.jp/hiki/?Research+Collaborations). The source code of POpULar is also accessible by contacting Yosuke Fujii of5

Meteorological Research Institute (http://www.mri-jma.go.jp/Member/oc/kefujiiyosukefu_en.html).

Appendix A: Optimization scheme of Derber and Rosati (1989)

The conjugate gradient method with the preconditioning of x̃ = B−1/2x uses the following equations:

x̃k = x̃k−1 +αkd̃k−1, (A1)

βk = g̃T
kỹk/d̃T

k−1ỹk, (A2)10

d̃k =−g̃k +βkd̃k−1. (A3)

With the non-transformed variables, the above equations can be rewritten as

xk = xk−1 +αkdk−1, (A4)

βk = hT
kyk/dT

k−1yk, (A5)

dk =−hk +βkdk−1. (A6)15

Here we should note that B−1 nor B1/2 is not required, but only the multiplication hk = Bgk is calculated. If a linear problem

is considered, Eq. (A5) is written as

βk = hT
kgk/hT

k−1gk−1, (A7)

and this is used in DR89. Introducing e = B−1d, the step length αk is calculated as

fk = ek−1 + MTR−1Mdk−1, (A8)20

αk =−gT
k−1dk−1/dT

k−1fk. (A9)

Differently from POpULar, Eq. (A9) gives the analytical solution of αk. If the cost function J is convex quadratic, i.e., linear

problem, αk can be derived analytically by

αk =−gT
k−1dk−1/

(
dT

k−1Qdk−1

)
, (A10)

where Q is the Hessian of J (= B−1 + MTR−1M) (Nocedal and Wright, 2006). One may easily find the above equation is the25

same as Eq. (A9). Such an analytical calculation of αk is the so-called exact line search. After the updates of x with Eq. (A4)
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and d with Eq. (A6), g and e are updated as

gk = gk−1 +αkfk, (A11)

ek =−gk +βkek−1. (A12)

Starting from the initial condition of

x0 = 0, (A13)5

g0 = MTR−1ddobs, (A14)

h0 = Bg0, (A15)

d0 =−h0, (A16)

e0 =−g0, (A17)

equations (A4)–(A12) are repeatedly calculated until the values of x are converged enough.10

Appendix B: Practical calculations of d and q

Practical derivations of dk and qk (Eqs 11 and 17) are as follows:

s0 =−hk, (B1)

t0 =−gk, (B2)

sl−1 = sl− ρk+ltT
l pk+lzk+l (l = 0,−1, · · · ,−m+ 1), (B3)15

tl−1 = tl− ρk+ltT
l pk+lyk+l (l = 0,−1, · · · ,−m+ 1), (B4)

s′−m = γks−m, (B5)

t′−m = γkt−m, (B6)

s′l = s′l−1− ρk+l

(
tT
l pk+l− s′Tl−1yk+l

)
pk+l (l =−m+ 1,−m+ 2, · · · ,0), (B7)

t′l = t′l−1− ρk+l

(
tT
l pk+l− s′Tl−1yk+l

)
qk+l (l =−m+ 1,−m+ 2, · · · ,0), (B8)20

dk = s′0, (B9)

qk = αkt′0. (B10)
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Appendix C: Pseudo observation sites

Table C.1. List of pseudo observation sites used in the identical twin experiment

Site name Latitude [deg.] Longitude [deg.] Altitude [m]

Alert 82.45 -62.51 205

Ny-Alesund 78.91 11.89 479

Mould Bay 76.25 -119.35 35

Summit 72.60 -38.42 3214

Barrow 71.32 -156.61 16

Pallas-Sammaltunturi 67.97 24.12 565

Ocean Station M 66.00 2.00 0

Storhofdi 63.40 -20.29 127

Churchill 58.75 -94.01 35

Baltic Sea 55.35 17.22 28

Cold Bay 55.21 -162.72 57

Mace Head 53.33 -9.90 26

Shemya Island 52.71 174.13 28

Ile Grande 48.80 -3.58 15

Hohenpeissenberg 47.80 11.02 941

Ulaan Uul 44.45 111.10 1012

Black Sea 44.18 28.66 5

Plateau Assy 43.25 77.88 2524

Cape Ochi-ishi 43.15 145.50 50

Begur 41.97 3.23 16

Centro de Investigacion de la Baja Atmosfera 41.81 -4.93 850

Niwot Ridge 40.05 -105.59 3526

Wendover 39.90 -113.72 1332

Point Arena 38.95 -123.74 22

Terceira Island 38.77 -27.38 24

Tae-ahn Peninsula 36.74 126.13 21

Mt. Waliguan 36.29 100.90 3815
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Table C.1. (continued)

Site name Latitude [deg.] Longitude [deg.] Altitude [m]

Lampedusa 35.52 12.62 50

Finokalia 35.34 25.67 155

La Jolla 32.90 -117.30 15

Tudor Hill 32.26 -64.88 35

WIS Station 30.86 34.78 482

Izana 28.31 -16.50 2377

Sand Island 28.21 -177.38 15

Key Biscayne 25.67 -80.16 6

Yonagunijima 24.47 123.02 50

Minamitorishima 24.28 153.98 28

Assekrem 23.26 5.63 2715

Mauna Loa 19.54 -155.58 3402

Cape Kumukahi 19.52 -154.82 8

High Altitude Global Climate Observation Center 18.98 -97.31 4469

Cape Rama 15.08 73.83 65

Mariana Islands 13.39 144.66 5

Ragged Point 13.16 -59.43 20

Christmas Island 1.70 -157.15 5

Mt. Kenya -0.06 37.30 3649

Mahe Island -4.68 55.53 6

Ascension Island -7.97 -14.40 90

Arembepe -12.77 -38.17 6

Tutuila -14.25 -170.56 47

Cape Ferguson -19.28 147.06 7

Easter Island -27.16 -109.43 69

Cape Point -34.35 18.49 260

Cape Grim -40.68 144.69 164

Baring Head Station -41.41 174.87 85

Crozet Island -46.43 51.85 202

Macquarie Island -54.48 158.97 11

Tierra Del Fuego -54.85 -68.31 17

Drake Passage -59.00 -64.69 5
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Table C.1. (continued)

Site name Latitude [deg.] Longitude [deg.] Altitude [m]

Palmer Station -64.92 -64.00 15

Casey -66.28 110.52 52

Mawson Station -67.62 62.87 37

Syowa Station -69.00 39.58 3

Halley Station -75.61 -26.21 33

South Pole -89.98 -24.80 2815
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Table 1. Prior and true flux datasets (other than the fossil fuel emission) used in the identical twin experiment

Description Reference

True Land:

NEP fluxes from CASA modified by inversion Randerson et al. (1997), Niwa et al. (2012)

Biomass burning emissions from GFED v3.1 van der Werf et al. (2010)

Ocean:

Climatological ∆pCO2 measurement-based fluxes Takahashi et al. (2009)

Priror Land:

NBP fluxes from VISIT Ito and Inatomi (2012)

Ocean:

∆pCO2 measurement-based fluxes Iida et al. (2015)

Table 2. List of the eight sensitivity tests and the global root mean square errors (GRMSE) of each posterior flux for the global land, the

global ocean, and the global total. The numbers in parenthesis are those of the prior flux.

No. Model Optimization scheme Prior error covariance GRMSE [10−7 mol m−2 s−1]

Land (5.58) Ocean (0.24) Global (5.59)

(1) LINEAR DR89 diag. 4.09 0.25 4.10

(2) NON-LINEAR DR89 diag. 6.69 0.36 6.70

(3) LINEAR POpULar diag. 4.09 0.25 4.10

(4) NON-LINEAR POpULar diag. 4.06 0.24 4.07

(5) LINEAR DR89 off-diag. 3.29 0.20 3.30

(6) NON-LINEAR DR89 off-diag. 3.37 0.20 3.37

(7) LINEAR POpULar off-diag. 3.29 0.20 3.30

(8) NON-LINEAR POpULar off-diag. 3.20 0.20 3.21
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Figure 1. A schematic figure of NICAM-TM 4D-Var. A roman numeral indicates each calculation described in the text.

Figure 2. Locations of surface flask observation site (magenta triangle) and four distributions of error correlation introduced in the off-

diagonal elements of B, which are centered at two land grids (60°N, 110°E and 60°N, 180°), and two ocean grids (0°, 150°E and 0°, 60°W),

selected for example.
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Figure 3. Global root-mean-square error (GRMSE) changes with iterations for the linear (red) and non-linear (blue) models. Sensitivities to

the optimization schemes (DR89: left, POpULar: right) and to the prior error covariance matrixes (diagonal: upper, off-diagonal: bottom) are

shown.
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Figure 4. Root-mean-square error (RMSE) distributions of the posterior fluxes derived by POpULar+NON-LINEAR with the diagonal B (a)

and the off-diagonal B (b). The difference between (b) and (a) is shown in (c) as well as the RMSE distribution of the prior flux (d).
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Figure 5. Atmospheric CO2 concentrations simulated by the forward NICAM-TM driven by the true, prior and posterior fluxes. The left

panel shows the time series of concentrations at one observation site (Minamitorishima), located in the western North Pacific. Black open

circles denote observations that are assimilated in the experiment, and green and blue lines represent CO2 concentrations calculated from the

prior and posterior fluxes, respectively. The right panel shows latitude-time cross sections of surface zonal averages calculated from the true

(b), prior (c), and posterior fluxes (d).
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Figure 6. Monthly mean distributions of the prior (left), posterior (middle) and true (right) CO2 fluxes. Fluxes are shown for March (a-c),

July (d-f) and September (g-i) of 2010. Note that the fluxes do not include fossil fuel emissions, which are not optimized in the inversion.
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Figure 7. Same as Fig. 6, but focused on regional flux anomalies due to biomass burnings for Southeast Asia in March (a-c), South America

in September (d-f), and Africa in September (g-i). Gray triangles denote locations of the observational sites.
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Figure 8. Monthly variations of the true (gray), prior (green) and posterior (blue) CO2 fluxes integrated for latitude bands of 30–90°N (a,b),

30°S–30°N (c,d) and 30-90°S (e,f). Terrestrial (non-fossil fuel flux) (right) and ocean (left) fluxes are separately shown.
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Figure 9. Latitudinal profiles of annual zonal mean CO2 fluxes (gray: true, green: prior, blue: posterior), for the total (a), terrestrial (b) and

ocean (c) areas. Note that fossil fuel emission is not included.
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